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a b s t r a c t

9-Acridone-4-carboxylic acid has been established as an efficient Cr(III) fluorescent sensor. The bind-
ing of this ligand with Cr(III) is confirmed by FTIR, thermal and mass spectral analysis of the product.
Based on this chelation assisted fluorescence quenching, a highly sensitive spectrofluorometric method
ccepted 26 January 2011
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is developed for trace level detection, estimation and speciation studies of chromium in DMF-water. The
ligand has an excitation and emission maxima at 408 nm and 498.4 nm, respectively. The equilibrium
binding constant of the ligand with Cr(III) is 8.1378 × 104 as calculated using Stern–Volmer equation. Up
to 9 × 10−6 mol L−1 of [Cr3+], linearity has been observed. The interference of foreign ions has been found
to be negligible.

© 2011 Elsevier B.V. All rights reserved.

peciation

. Introduction

Toxicological studies have indicated that the degree of toxicity
f metal ions depends on its chemical form. The toxic nature of
he Cr(VI) is attributed to its higher oxidation potential and rela-
ively smaller size, which enables it to penetrate through biological
ell membranes. Moreover, in air, chromium particulates play an
mportant role in the oxidation of sulfur dioxide, leading to the
ormation of acidic aerosols responsible for global acid rain [1].
r(VI) has an adverse impact on liver, lung, kidney [2] and causes
ancer by oxidizing the biological species such as DNA and some
roteins [3].Cr(III) may be considered as an essential trace element
or the proper functioning of living organisms (mammals), e.g.: for
he maintenance of “glucose tolerance factor”; it is thought to be a
ofactor for the insulin action and to have a role in the peripheral
ctivity of this hormone. Metallic chromium or its compounds are
idely used in anodizing operation in the surface industry, in mak-

ng alloys, chrome plating, leather tanning, batteries, refractory,
ordant dyeing, paints, welding, catalysis, corrosion control, oxi-
ation, wood preservative and various other industrial applications
4,5]. Chromium species can enter into the environment from their
ischarge. They can also enter into drinking water supply systems
rom the corrosion inhibitors used in water pipes and contain-
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ers. The threshold limit for chromium uptake in air is 0.1 mg m−3

and in water is 0.05 mg dm−3 [3]. Owing to these two contrasting
effects, precise and accurate determination of both species in envi-
ronmental samples is essential, in addition to the total chromium
content [6–8]. Chromium content in natural waters is normally
at �g L−1 level and there are also severe matrix interferences,
which cannot be minimized. Therefore, the direct determination
may not be possible with sufficient sensitivity and selectivity even
by the methods such as flame atomic absorption spectrometry
(FAAS) [9,10], graphite furnace atomic absorption spectrometry
(GFAAS) [11,12], inductively coupled plasma atomic emission spec-
troscopy (ICPAES) [13], X-ray fluorescence spectrometry [14] and
electrochemical methods [15,16]. Some forms of preliminary sepa-
ration and pre-concentration like liquid–liquid extraction [17,18],
cloud point extraction [19], ion-exchange [20,21] and solid phase
extraction [22–24] are required. Bueno et al. [25] reported direct
chromium speciation using X-ray spectrometry allied to chemo-
metrics without separation / preconcentration of Cr species with a
detection limits of 17 and 50 �g L−1 for Cr(III) and Cr(VI) respec-
tively. X-ray fluorescence spectrometric determination of Cr(VI)
after aliquat 336-AC assisted solid phase extraction was carried out
by De Vito et al. [26] which required no elution process. Ghaedi
et al. [27] reported a new Cr(III) selective electrode based on

1-[(2-hydroxyethyl) amino]-4-methyl-9H-thioxanthen-9-one as a
neutral carrier with detection limit of 1.6 × 10−7 mol L−1. Despite
having good limits of detection and wide linear ranges, most of
these techniques necessitate the use of sophisticated and costly
apparatus and complicated operational procedure. Recently, the

dx.doi.org/10.1016/j.jhazmat.2011.01.110
http://www.sciencedirect.com/science/journal/03043894
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[Cr(III)(L)2NO3] complex

Scheme 1. Synthesis of the fluoresc

uorescent method has become very popular due to its operational
implicity, high selectivity, sensitivity, rapidity, nondestructive
ethodology and direct visual perception [28]. For an efficient

uorescent sensor, in addition to high selectivity towards the
on of interest, a significant change in the fluorescence intensity
n presence of the ion and /or a spectral change are required
29,30]. Although, recently a few Cr(III) selective fluorescent sen-
ors [31–33] have been reported but report on trace level speciation
nd estimation of chromium species without separation of indi-
iduals by fluorescence quenching technique are rare [34]. Herein,
e report the use of 9-acridone-4-carboxylic acid as an efficient

nd selective fluorescent sensor for Cr speciation. The developed
ethod is very fast, simple, and inexpensive. The binding of the

eagent with Cr(III) is firmly established by the ESI-MS (+) tech-
ique and supported by FTIR spectroscopy and binding constant
easurement using Stern–Volmer method [35].

. Experimental

.1. Materials

2-Chloro benzoic acid (Alfa Aesar, India) and anthranilic acid
SRL, India) were purchased and used as received. All other chem-
cals and solvents were of analytical grade and used without
urther purification. Milli-Q 18.2 M� cm−1 conductivity purifica-
ion system (Bedford, MA, USA) water was used throughout all
he experiments. Cr(III) and Cr(VI) stock solutions were prepared
rom Cr(NO3)3·9H2O and K2CrO4 (Merck, Dramstadt, Germany)
espectively. The solutions 50 mg L−1 for Cr(III) and 5 mg L−1 for

r(VI) were prepared in deionised water respectively. These solu-
ions were standardized against standard stock solutions of Cr(III)
1000 mg L−1) supplied by SOLUTIONS plus inc. (Missouri, USA)
hich were tested vs. NIST SRM # 3108a using AAS. The working

olutions of Cr(III) and Cr(VI) were prepared by successive dilution
emosensor and its Cr(III) complex.

of the stock solutions. The sources of Na+, K+, Ca2+, Mg2 +, Mn2+,Cr3+,
Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+and Pb2+ ions are either their
chloride or nitrate salts.

2.2. Apparatus

Absorption and fluorescence spectra were recorded on Shi-
madzu Multi Spec 1501 absorption spectrophotometer and Hitachi
F-4500 fluorescence spectrophotometer, respectively. Mass spec-
trum was recorded in QTOF Micro YA 263 mass spectrometer in
ESI positive mode. IR spectra were recorded on a JASCO FTIR spec-
trophotometer (model: FTIR-H20). Thermogravimetric analysis
was performed on a Perkin Elmer TG/DTA lab system l (Technol-
ogy by SII). A VARIAN (Spectra AA 55) flame atomic absorption
spectrophotometer (FAAS) (Australia) was used for measuring con-
centration of Cr(III) in the isolated Cr complex to confirm the
structure of the L–Cr(III) complex. All measurements were per-
formed using integrated absorbance (peak area). Hollow cathode
lamp for Cr was operated at 7.0 mA at wave length 357.9 nm and at
a slit width of 0.2 nm. Air and acetylene flow rates were maintained
at 3.5 and 1.5 L min−1 respectively.

2.3. Synthesis of the ligand (L)

Scheme 1 shows the Ullmann condensation of 2-chlorobenzoic
acid and 2-aminobenzoic acid followed by cyclization in the pres-
ence of sulfuric acid, produced 9-acridone-4-carboxylic acid [36].

2.4. Synthesis and Isolation of Cr(III) complex with L (Scheme 1)
DMF solution of Cr(III) (55.6 mg, 0.139 mmol of Cr(NO3)3.9H2O
in 5 mL DMF) was added to a methanolic solution of L
(100 mg,0.418 mmol of L in 10 mL methanol) dropwise, and the
mixture was stirred for 1 h (Scheme 1). The green reaction mixture
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tant characteristics of an ion-selective chemosensor, which is the
relative optode response for the primary ion over other ions
present in the solution. Thus, the influence of a number of com-
mon metal ions on the fluorescence intensity of the proposed
Fig. 1. Excitation and emission spectra of L (1 �M).

as kept for 3 days to obtain green crystalline compound which
as characterized by ESI-TOF mass spectra and atomic absorp-

ion spectrometric analysis of chromium. m/z (ESI TOF positive)
or C28H16 CrN3O9: 590.03 (M); found: 613.03 [M + Na]+ %Cr: Cr,
.83 (calcd. 8.81). Selective FT-IR data (cm−1): 1325 (�s NO2); 1405
�a NO2), 1618 (� CO).

.5. Measurement procedures

A 1 × 10−6 mol L−1 solution of Cr3+ was obtained by serial dilu-
ion of the stock solution. A 10−6 mol L−1 stock solution of L was
repared by dissolving appropriate amount of L in DMF: water (9:1,
/v). The aforementioned solutions of Cr3+ and L were mixed in
ifferent ratios for subsequent fluorescence measurement. 1.00 cm
uartz cell was used for fluorescence measurement.

Thermal studies of the ligand and its Cr(III) complex was
lso performed to prove the binding event of the ligand with
r(III).

. Results and discussion

.1. Spectral characteristics

Fig. 1 shows the excitation (� = 408 nm) and emission
� = 498.4 nm) spectra of L. The value of Stokes shift (ϑA − ϑF),
hich is an important parameter indicating the difference in
roperties and structure between the ground state (S0) and the
rst excited state (S1) of 9-acridone-4-carboxylic is 4450 cm−1.
pon addition of Cr3+ ion, quenching of the fluorescence inten-

ity at 498.4 nm occurs. The changes in the fluorescence emission
ntensities of L (1 × 10−6 mol L−1) as a function of added [Cr3+]
1 × 10−6 mol L−1–1.8 × 10−5 mol L−1) are presented in Fig. 2. The
lot of fluorescence intensities vs externally added [Cr3+] (Fig. 3)
eveals that after a certain amount of externally added Cr3+, there
s no further change in the emission intensity of the system. Up to 9
imes (9 × 10−6 mol L−1) of the externally added [Cr3+], we observed
inearity. So, by making use of this linear relationship (inset of

ig. 3), one can easily find out the concentration of any unknown
r(III) species in aqueous solution. If we go to the lower limit of
dded [Cr3+] the change of fluorescence intensity is detectable
pto 0.2 times of L (1 × 10−6 mol L−1) i.e. 2 × 10−7 mol L−1 added
r3+. ESI-TOF mass spectra (Fig. 4), confirmed the structure of the
Fig. 2. Changes of the fluorescence spectra of L (1 �M, �ex = 408 nm, �em = 498.4 nm)
in DMF/water, 9/1 (v/v) as a function of added [Cr3+].

Cr(III)–L complex as [Cr(III)(L)2(NO3)]. Fig. 5 supported the 2:1 sto-
ichiometry of ligand (L) and Cr(III) complex [37].

3.2. Calculation of binding constant

The binding constant of the ligand L with Cr3+ is
8.1378 × 104 (Fig. 6) as calculated using Stern–Volmer equa-
tion, I0/(I0 − I) = 1/A + 1/KA · 1/[Q] where, I0 is the fluorescence
intensity of free ligand L, I is the fluorescence intensity of the
L–[Cr3+] complex, Q is [Cr3+], A is constant and K is binding
constant.

3.3. Selectivity

The selectivity behavior is obviously one of the most impor-
Fig. 3. Fluorescence intensity vs [Cr3+], inset shows that upto 9 times [Cr3+] linearity
is sustained.
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Fig. 4. ESI-TOF mass spectra of the Cr(II

r3+ chemosensor was investigated. In Fig. 7 effect of foreign
etal ions on the fluorescence intensity of the L–Cr3+ system

s presented. Increase in the fluorescence intensity compared to
he L–Cr3+ system upon addition of foreign cations is designated
s positive interference and the reverse phenomenon is desig-
ated as negative interference. In this study, [L] = 10−6 mol L−1,
Cr3+] = 10−6 mol L−1 and the foreign metal ions are present 10
imes of the [Cr3+] i.e. 10−5 mol L−1. It is observed from Fig. 7 that
a+, K+, Mg+2,Ca2+, Cd2+, Zn2+, Hg2+, Mn2+, Cu2+, Fe3+, Co2+, Pb2+,

i2+ show insignificant positive interferences. Common anions

ncluding oxalate, dithionite and dithionate have no interference
n the fluorescence intensity of the ligand or L–Cr(III) com-
lex.

ig. 5. Job’s Plot to determine the stoichiometry of the Cr3+–L complex in solution.
plex with the fluorescent chemosensor.

3.4. Thermal studies

Stability of the ligand, L and its Cr(III) complex was studied by
thermogravimetry (TGA / DTG) to prove the binding event of the
ligand, L with Cr(III) ion. Results are presented in Figs. 8 and 9
respectively. It is clear from the graphs that thermal stability of
the Cr(III) complex (up to 150 ◦C) is more than the free ligand (up
to 100 ◦C)
3.5. Speciation studies

So far we have observed that Cr(III) can quench the fluo-
rescence intensity of the L significantly and we can detect and

Fig. 6. Stern–Volmer plot for calculating binding constant of the chemosensor with
Cr(III).
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Fig. 7. Interfere

stimate trace level Cr(III) in aqueous solution. But Cr(VI) have
o effect on the fluorescence intensity of the L. So we converted
r(VI) to Cr(III) by using two different reducing agents, viz. oxalic
cid and sodium dithionite. In our case oxalic acid worked bet-
er. We have already mentioned that oxalate or dithionate and
ithionite have no adverse effect on the emission intensities of

ither free ligand or L–Cr(III) complex. So, slight excess of these
pecies in the mixture will not be harmful to our methodology.
nly thing, we have to do after oxalic acid assisted reduction
f Cr(VI) to Cr(III), the pH of the medium should be neutral
s we have observed diminished emission intensity of the lig-

Fig. 8. Thermal studies of the fl
foreign cations.

and at acidic pH. Fig. 10 shows the changes of the fluorescence
emission intensities of L (1 × 10−6 mol L−1) with the addition of
different concentrations of Cr(VI) (1 × 10−6–6 × 10−6 mol L−1) fol-
lowed by equivalent amount of oxalic acid. It can be said that
with increasing [Cr(VI)], proportionate amount of [Cr(III)] produced
in situ which reacted with the L and consequently, emission inten-

sities of the system decreased gradually. Thus, in a mixture of
Cr(III) and Cr(VI), we can directly measure free [Cr(III)] and total
[Cr(III)] (which is sum of free Cr(III) and Cr(III) produced from free
Cr(VI) after reduction with oxalic acid). Difference will give free
[Cr(VI)].

uorescent chemosensor.
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Fig. 9. Thermal studies of the Cr(III) complex with fluorescent chemosensor.
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Table 1
Separation of Cr(III) and Cr(VI) in binary synthetic mixtures.

No. of
observations

Amount taken
(�g)

Amount found (�g) Error (%)

1 Cr(III)—50 Cr(III)—51 ± 0.2 1
Cr(VI)—50 Cr(VI)—49.2 ± 0.06 0.8

2 Cr(III)—30 Cr(III)—29.6 ± 0.5 0.4
Cr(VI)—50 Cr(VI)—48.2 ± 0.6 1.8

3 Cr(III)—15 Cr(III)—16.2 ± 0.1 1.2
Cr(VI)—65 Cr(VI)—66.4 ± 0.03 1.4

4 Cr(III)—65 Cr(III)—64.1 ± 0.03 0.9
Cr(VI)—25 Cr(VI)—26.2 ± 0.09 1.2

5 Cr(III)—30 Cr(III)—31.1 ± 0.5 1.1
Cr(VI)—45 Cr(VI)—44.4 ± 0.7 0.6

Table 2
Level of Chromium species in environmental samples as determined by present
method.

Sample no. Present method Reference method [26]

Cr(III) Cr(VI) Cr(III) Cr(VI)

1a 683.2 ± 0.2 595.9 ± 2 684.2 ± 1 598 ± 3
2a 571.6 ± 3 511.2 ± 4 570 ± 4 509 ± 5
3a 475 ± 1 417.2 ± 3 472 ± 3 415 ± 2
4b 63.3 ± 3 52.5 ± 1 62.3 ± 3 51.3 ± 1
5b 43.8 ± 3 44.2 ± 4 41.1 ± 2 43.2 ± 4

5. Conclusion
ig. 10. Changes of the fluorescence intensities of L (1 �M in DMF/water, 9/1 (v/v)
s a function of converted [Cr3+], obtained by the reduction of Cr(VI).

. Applications

.1. Estimation of Cr(III) and Cr(VI) from the binary synthetic
ixtures

In different sets (each set in duplicate) different amounts of
r(III) and Cr(VI) were mixed in a total volume of 100 mL. Direct
stimation of Cr(III) was performed using our developed method.
eduction of Cr(VI) to Cr(III) by equivalent amount of oxalic acid
as performed and total Cr(III) in the solution was estimated as
entioned above. The difference gave free Cr(VI) present in the

olution. The results are presented in Table 1.
.2. Real samples analysis

The waste water samples from different sources (three sam-
les from tannery industrial area, Kolkata and three samples
6b 35.8 ± 4 34.5 ± 5 33.5 ± 0.8 36.0 ± 5

a Tannery water.
b Industrial water.

from Durgapur Industrial belt, West Bengal, India) were filtered
through a 0.45 �m Milipore membrane filter. They were analyzed
as described in the previous section. The results are compared with
a reference method [38] and a good agreement is found between
the two (t-test, P = 0.06). Results are presented in Table 2.
It has been found that 9-acridone-4-carboxylic acid can selec-
tively detect trace level Cr3+ by fluorescence quenching method
with negligible interference from few cations. The reagent pos-
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esses high binding affinity towards Cr(III) in aqueous-DMF
olution which may be attributed to the affinity of hard binding sites
N, O) of acridone derivative towards hard cation, Cr(III). This fact
elped us in Cr speciation without any cumbersome pre-separation
rocess. Analysis of Cr species in different synthetic as well as envi-
onmental samples has been successfully performed.
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